Please wait a minute...
中国电机工程学报
 
      设为首页      加入收藏
 
  首页 | 中国电机工程学报 | 当期目录 | 过刊浏览 | 投稿指南 | 期刊订阅 | 联系我们 | Email Alert | RSS | 留言板 | English
中国电机工程学报  2019, Vol. 39 Issue (9): 2702-2712    DOI: 10.13334/j.0258-8013.pcsee.180113
  继电保护、通信及自动化 本期目录 | 过刊浏览 | 高级检索 |
基于故障分量瞬时功率相空间轨迹识别的线路纵联保护新原理
金能1, 戎子睿1, 林湘宁1, 邢家维1, 李正天1, 刘世明2, 刘尧1, 张培夫1, 井嵘3
1.强电磁工程与新技术国家重点实验室(华中科技大学),湖北省 武汉市 430074;
2.电网智能化调度与控制教育部重点实验室(山东大学),山东省 济南市 250061;
3.国网烟台供电公司,山东省 烟台市 264001
A Novel Principle of Line Pilot Protection Based on the Recognition of Phase Space Trajectory of Fault Component Instantaneous Power
JIN Neng1, RONG Zirui1, LIN Xiangning1, XING Jiawei1, LI Zhengtian1, LIU Shiming2, LIU Yao1, ZHANG Peifu1, JING Rong3
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science and Technology), Wuhan 430074, Hubei Province, China;
2. Key Laboratory of Power System Intelligent Dispatch and Control (Shandong University), Ministry of Education, Ji’nan 250061, Shandong Province, China;;
3. State Grid Yantai Electric Company, Yantai 264001, Shandong Province, China
下载:  PDF(578KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 纵联差动保护具有高选择性、全线速动的优点,广泛应用于220kV及以上高压输电线路,其动作性能显著优于其他纵联主保护,在现场应用中逐渐居主导地位。但是,采样数据同步对时误差、可控高抗补偿度不确定等因素将对该保护的性能产生较大的不利影响。针对上述问题,基于相空间轨迹识别的思路,提出一种具备抗同步对时误差能力的线路纵联保护新原理:首先从理论上验证了相空间重构法应用于线路保护的可行性,选取故障分量瞬时功率作为重构相空间的一维时间序列,分析了系统不同工况下相空间轨迹的变化规律,进而设计了一种基于相空间轨迹识别的线路纵联保护新判据。基于PSCAD/EMTDC的仿真结果表明,所提新判据具有免整定、超快速动作,不受并联电抗器补偿度不确定影响,基本不受两侧数据失步影响,以及耐受高过渡电阻等优点。
服务
加入引用管理器
E-mail Alert
RSS
作者相关文章
金能
戎子睿
林湘宁
邢家维
李正天
刘世明
刘尧
张培夫
井嵘
关键词:  纵联保护  同步对时误差  可控高抗  相空间轨迹  故障分量瞬时功率  免整定    
Abstract: Pilot differential protection is with high selectivity and speed and widely used in 220kV and above high voltage transmission line, which is significantly superior to other pilot protections and occupies the leading position in the field application. However, the synchronization error and uncertainty of controllable high resistance compensation degree have a great adverse effect on the performance of the protection. To deal with above problems, a novel principle of line pilot protection based on the recognition of phase space trajectory with synchronization error tolerating ability was proposed in this paper. Firstly, the possibility of applying phase space reconstruction method to the line protection was analyzed. Then fault component instantaneous power was selected as one dimensional time series of phase space, the phase space trajectory variation characteristic under different condition was analyzed and finally a new line pilot protection criterion based on the recognition of phase space trajectory was proposed. PSCAD/EMTDC based simulation results verifies that the proposed criterion has the advantages of no setting, high speed, high transition resistance tolerating ability, and it is barely influenced by the compensation degree of shunt reactors and asynchrony of two side data.
Key words:  pilot protection    synchronization error    controllable high resistance compensation    phase space trajectory    fault component instantaneous power    no setting
收稿日期:  2018-04-10                出版日期:  2019-05-05      发布日期:  2019-05-14      期的出版日期:  2019-05-05
ZTFLH:  TM77  
基金资助: 国家自然科学基金项目(51577077,51677108); 国家电网公司科技项目
作者简介:  金能(1993),男,博士研究生,研究方向为电力系统继电保护,769025951@qq.com;戎子睿(1996),男,硕士研究生,研究方向为电力系统继电保护;林湘宁(1970),男,教授,博士生导师,研究方向电力系统保护与控制、新能源发电等;邢家维(1994),男,硕士研究生,研究方向为电力系统继电保护及其自动化;李正天(1979),男,讲师,研究方向电力系统保护与控制、新能源发电等;刘世明(1972),男,教授级高级工程师,研究方向为变电站自动化及电力系统继电保护等。
引用本文:    
金能, 戎子睿, 林湘宁, 邢家维, 李正天, 刘世明, 刘尧, 张培夫, 井嵘. 基于故障分量瞬时功率相空间轨迹识别的线路纵联保护新原理[J]. 中国电机工程学报, 2019, 39(9): 2702-2712.
JIN Neng, RONG Zirui, LIN Xiangning, XING Jiawei, LI Zhengtian, LIU Shiming, LIU Yao, ZHANG Peifu, JING Rong. A Novel Principle of Line Pilot Protection Based on the Recognition of Phase Space Trajectory of Fault Component Instantaneous Power. Proceeding of the CSEE, 2019, 39(9): 2702-2712.
链接本文:  
http://www.pcsee.org/CN/10.13334/j.0258-8013.pcsee.180113  或          http://www.pcsee.org/CN/Y2019/V39/I9/2702
[1] 张保会,尹项根.电力系统继电保护[M].北京:中国电力出版社,2010:102-107.
Zhang Baohui,Yin Xianggen.Power system protective realying[M].Beijing:China Electric Power Press,2010:102-107(in Chinese).
[2] 朱国防,陆于平.线路差动保护的相移制动能力研究[J].中国电机工程学报,2009,29(10):84-90.
Zhu Guofang,Lu Yuping.Studies on phase shift restraint capacity of feeder current differential protection[J].Proceedings of the CSEE,2009,29(10):84-90(in Chinese).
[3] 曹团结,马锁明,许捷,等.线路电荷变化量差动保护[J].电力系统自动化,2013,37(23):102-107.
Cao Tuanjie,Ma Suoming,Xu Jie,et al.Change-of-charge differential protection of transmission lines[J].Automation of Electric Power Systems,2013,37(23):102-107(in Chinese).
[4] Darwish H A,Taalab A M I,Ahmed E S.Investigation of power differential concept for line protection[J].IEEE Transactions on Power Delivery,2005,20(2):617-624.
[5] Taalab A M I,Darwish H A,Ahmed E S.Performance of power differential relay with adaptive setting for line protection[J].IEEE Transactions on Power Delivery,2007,22(1):50-58.
[6] 黄家凯,高厚磊,彭放,等.输电线路虚拟有功功率差动保护[J].电力系统自动化,2017,41(14):190-196.
Huang Jiakai,Gao Houlei,Peng Fang,et al.Virtual active power differential protection for transmission lines[J].Automation of Electric Power Systems,2017,41(14):190-196(in Chinese).
[7] 刘世明,许志成,李森林,等.基于相空间的励磁涌流新特征分析[J].电力系统自动化,2012,36(18):134-138.
Liu Shiming,Xu Zhicheng,Li Senlin,et al.A novel characteristic of magnetizing inrush current based on phase space[J].Automation of Electric Power Systems,2012,36(18):134-138(in Chinese).
[8] Dubey R,Samantaray S R,Panigrahiand B K,et al.Phase-space-based symmetrical fault detection during power swing[J].IET Generation,Transmission & Distribution,2016,10(8):1947-1956,.
[9] Samantaray S R.Phase-space-based fault detection in distance relaying[J].IEEE Transactions on Power Delivery,2011,26(1):33-41.
[10] Baker G L,Gollub J P.Chaotic Dynamics:An Introduction[M].Cambridge,U.K.:Cambridge University Press,1990.
[11] Takens F.Detecting strange atractors in turbulence,in lecture notes in mathematics[M].Berlin,Germany:Springer Berlin/Heidelberg,1981:366-381.
[12] Sauer T,Yorke J A,Casdagli M.Embedology[J].Journal of Statistical Physics,1991,65(3-4):579-616.
[13] Grassberger P,Procaccia I.Estimation of the Kolmogorov entropy from a chaotic signal[J].Physical Review A,1983,28(4):2591-2593.
[14] Namdari F,Jamali S,Crossley P A.Power differential protection as primary[C]//2008 IET 9th International Conference on Developments in Power System Protection (DPSP 2008),Glasgow,2008:80-85.
[15] 李捷,苗世洪,刘沛,等.基于分相有功功率差动原理的线路高阻接地保护判据[J].电网技术,2011,35(8):197-201.
Li Jie,Miao Shihong,Liu Pei,et al.A protection criterion for high resistance grounding of transmission line based on phase-segregated active power differential principle[J].Power System Technology,2011,35(8):197-201(in Chinese).
[16] 邓翔天,袁荣湘,肖振锋,等.基于瞬时功率理论的输电线路分相电流差动保护[J].电力自动化设备,2014,34(11):82-88.
Deng Xiangtian,Yuan Rongxiang,Xiao Zhenfeng,et al.Split-phase differential current protection based on instantaneous power theory for power transmission line[J].Electric Power Automation Equipment,2014,34(11):82-88(in Chinese).
[17] 马静,王增平,吴劼.基于广义瞬时功率的新型变压器保护原理[J].中国电机工程学报,2008,28(13):78-83.
Ma Jing,Wang Zengping,Wu Jie.A novel principle of transformer protection based on generalized instantaneous power[J].Proceedings of the CSEE,2008,28(13):78-83(in Chinese).
[18] 郑涛,刘万顺,吴春华,等.基于瞬时功率的变压器励磁涌流和内部故障电流识别新方法[J].电力系统自动化,2003,27(23):51-55.
Zheng Tao,Liu Wanshun,Wu Chunhua,et al.A new approach and internal to the discrimination between inrush-current fault current based on instantaneous power[J].Automation of Electric Power Systems,2003,27(23):51-55(in Chinese).
[19] 陈德树,尹项根,张哲,等.故障分量差动保护与故障变化量差动保护[J].电力系统自动化,2008,32(9):39-41.
Chen Deshu,Yin Xianggen,Zhang Zhe,et al.Fault component differential protection and fault variation component differential protection[J].Automation of Electric Power Systems,2008,32(9):39-41(in Chinese).
[20] 刘凯,索南加乐,邓旭阳,等.基于故障分量正序、负序和零序综合阻抗的线路纵联保护新原理[J].电力自动化设备,2010,30(4):21-25.
Liu Kai,Suonan Jiale,Deng Xuyang,et al.Principle of pilot line impedance protection based on integrated of fault component[J].Electric Power Automation Equipment,2010,30(4):21-25(in Chinese).
[1] 毕天姝,李彦宾,贾科,杨奇逊. 基于暂态电流波形相关性的新能源场站送出线路纵联保护[J]. 中国电机工程学报, 2018, 38(7): 2012-2019.
[2] 贾科, 宣振文, 李晨曦, 王聪博, 李猛, 毕天姝. 柔性直流配网中基于暂态高频阻抗比较的方向纵联保护[J]. 中国电机工程学报, 2018, 38(18): 5343-5351.
[3] 何佳伟, 李斌, 李晔, 邱宏, 王常骐, 戴冬康. 多端柔性直流电网快速方向纵联保护方案[J]. 中国电机工程学报, 2017, 37(23): 6878-6887.
[4] 陈乐, 薄志谦, 林湘宁, 魏繁荣, 余梦琪, 金能, 李正天, 黄景光, 邓科. 基于波形相似度比较的线路快速纵联保护研究[J]. 中国电机工程学报, 2017, 37(17): 5018-5027.
[5] 杨亚宇, 邰能灵, 范春菊, 刘琦, 陈金祥. 利用峰值频率的高压直流输电线路纵联保护方案[J]. 中国电机工程学报, 2017, 37(15): 4304-4314.
[6] 刘琪, 宋国兵. 基于电流偏差均值控制特性的高压直流输电线路纵联保护新原理[J]. 中国电机工程学报, 2016, 36(8): 2159-2167.
[7] 李钊, 邹贵彬, 许春华, 高厚磊, 冯谦. 基于S变换的HVDC输电线路纵联保护方法[J]. 中国电机工程学报, 2016, 36(5): 1228-1235.
[8] 杨亚宇, 邰能灵, 刘剑, 郑晓冬. 利用边界能量的高压直流线路纵联保护方案[J]. 中国电机工程学报, 2015, 35(22): 5757-5767.
[9] 郑伟杰. 可控高抗分相抑制过电压和潜供电流的暂态控制方法和策略[J]. 中国电机工程学报, 2014, 34(19): 3187-3193.
[10] 王雅婷,郑彬,申洪,周勤勇,班连庚,项祖涛,蒋陶宁. 西北新能源外送系统多FACTS协调控制方法[J]. 中国电机工程学报, 2013, 33(34): 162-170.
[11] 李小鹏,何正友,陈双,林圣. 基于电流行波固有频率的输电线路纵联保护方法[J]. 中国电机工程学报, 2013, 33(28): 121-129.
[12] 秦晓辉, 郭强, 周勤勇, 申洪, 刘楠, 张健, 郑超, 王义红, 李晶, 刘道伟, 顾卓远, 王雅婷, 张彦涛, 孙玉娇. 一种无功平衡与临界潮流快速分析方法及其在 特高压可控高抗需求分析中的应用[J]. 中国电机工程学报, 2013, 33(19): 102-110.
[13] 李斌,靳方超,李仲青,姚斌,李永丽. 电压回路中性线断线的隐性故障识别及其影响[J]. 中国电机工程学报, 2013, 33(13): 179-186.
[14] 索南加乐,王晨清,康小宁,马超,刘鑫. 基于分布参数频域模型识别的纵联保护原理[J]. 中国电机工程学报, 2013, 33(10): 145-153.
[15] 索南加乐,马超,康小宁,王晨清,刘鑫,李宗朋. 利用电流模型识别的输电线路纵联保护新原理[J]. 中国电机工程学报, 2012, 32(19): 109-116.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05032083号-2
版权所有: 《中国电机工程学报》编辑部
技术支持:北京玛格泰克科技发展有限公司