Please wait a minute...
中国电机工程学报
 
      设为首页      加入收藏
 
  首页 | 中国电机工程学报 | 当期目录 | 过刊浏览 | 投稿指南 | 期刊订阅 | 联系我们 | Email Alert | RSS | 留言板 | English
中国电机工程学报  2017, Vol. 37 Issue (21): 6427-6436    DOI: 10.13334/j.0258-8013.pcsee.170080
  高电压技术 本期目录 | 过刊浏览 | 高级检索 |
基于雷电物理的风机叶片动态击距与电气几何模型
王国政1, 张黎1, 郭子炘2, 马宇飞2, 李庆民2, 闫江燕2, 赵彤1, 邹亮1, SIEW Wah Hoon3
1.山东大学电气工程学院,山东省 济南市 250061;
2.新能源电力系统国家重点实验室(华北电力大学),北京市 昌平区 102206;
3.思克莱德大学电子与电气工程系,格拉斯哥 G11XQ,英国
Dynamic Striking Distance and Electrical Geometry Model of Wind Turbine Blades Based on Lightning Physics
WANG Guozheng1, ZHANG Li1, GUO Zixin2, MA Yufei2, LI Qingmin2, YAN Jiangyan2, ZHAO Tong1, ZOU Liang1, SIEW Wah Hoon3
1. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong Province, China;
2. State Key Lab of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Changping District, Beijing 102206, China;
3. Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow G11XQ, UK
下载:  PDF(782KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 风机叶片遭受雷击现已成为风电场亟需解决的问题之一。该文将电气几何方法与雷电先导发展的物理过程相结合,提出了针对风机叶片的电气几何分析模型。通过引入风机叶片动态击距的概念及分析方法,模拟了雷电先导的发展过程,使得击距的物理意义更加清晰,并进一步推导了叶片防雷系统效率的计算方法,最后基于风机叶片长间隙下击穿实验验证了该模型的有效性。利用提出的风机叶片电气几何模型,分析了叶片角度、雷电流幅值和接闪器布置对防雷系统效率的影响,分析发现叶片越接近水平、雷电流幅值越小叶片防雷系统效率越低,增设叶片侧接闪器能够有效提高防雷系统效率。该文提出的方法拟为风机叶片的防雷设计与评估提供理论依据。
服务
加入引用管理器
E-mail Alert
RSS
作者相关文章
王国政
张黎
郭子炘
马宇飞
李庆民
闫江燕
赵彤
邹亮
SIEW Wah Hoon
关键词:  风机叶片  电气几何模型  雷电防护  先导发展模型  动态击距  防雷系统效率    
Abstract: The damage of wind turbine blades suffered lightning strikes has been a key factor of the safe and reliable operation of wind farms. The electric geometrical model of wind turbine blades (EGMTB) was presented based on the traditional electric geometrical method and the physical process of lightning leader. The concept of dynamic striking distance was introduced and clarified the physical meaning of striking distance. And the calculation method of blade lightning protection system (LPS) efficiency was deduced. Finally, the effectiveness of EGMTB was validated by the long gap breakdown experiment of blades. The EGMTB was used to analyze the influence factors of blade LPS efficiency. It is indicated that the efficiency of blade LPS reduces with the decrease of lightning current and the angle between the blade and horizontal, and the efficiency of blade LPS can be improved by increasing the side lightning receptors. The EGMTB is intended to provide a theory for lightning protection design and evaluation of wind turbine blades.
Key words:  wind turbine blade    electric geometrical model    lightning protection    leader progression model    striking distance    efficiency of lightning protection system (LPS)
收稿日期:  2017-01-12                出版日期:  2017-11-05      发布日期:  2017-11-05      期的出版日期:  2017-11-05
ZTFLH:  TM 614  
基金资助: 国家自然科学基金项目(51677110,51420105011); 新能源电力系统国家重点实验室开放课题(LAPS16018);
作者简介:  王国政(1993),男,硕士研究生,主要研究方向为高电压预绝缘技术、风力发电机组雷击防护等,guozhengwang@foxmail.com;张黎(1979),男,副教授,硕士生导师,主要研究方向为高电压与绝缘技术、特高压电磁物理现象与应用技术和雷电物理等,本文通讯作者,zhleee@sdu.edu.cn。
引用本文:    
王国政, 张黎, 郭子炘, 马宇飞, 李庆民, 闫江燕, 赵彤, 邹亮, SIEW Wah Hoon. 基于雷电物理的风机叶片动态击距与电气几何模型[J]. 中国电机工程学报, 2017, 37(21): 6427-6436.
WANG Guozheng, ZHANG Li, GUO Zixin, MA Yufei, LI Qingmin, YAN Jiangyan, ZHAO Tong, ZOU Liang, SIEW Wah Hoon. Dynamic Striking Distance and Electrical Geometry Model of Wind Turbine Blades Based on Lightning Physics. Proceedings of the CSEE, 2017, 37(21): 6427-6436.
链接本文:  
http://www.pcsee.org/CN/10.13334/j.0258-8013.pcsee.170080  或          http://www.pcsee.org/CN/Y2017/V37/I21/6427
[1] International Electrotechnical Commission.IEC 61400- 24:Wind turbine-Part 24:Lightning protection[S].IEC,2010.
[2] 郭子炘,李庆民,闫江燕,等.海上风电场雷击演化物理机制的研究综述[J].电气工程学报,2015,10(5):10-19.
Guo Zixin,Li Qingmin,Yan Jiangyan,et al.Summary of research on physical evolution mechanism of lightning discharge of offshore wind farms[J].Journal of Electrical Engineering,2015,10(5):10-19(in Chinese).
[3] Muto A,Suzuki J,Ueda T.Performance comparison of wind turbine blade receptor for lightning protection[C]// Proceedings of the International Conference on Lightning Protection (ICLP).Cagliari,Italy:IEEE,2010.
[4] Montanyá J,March V,Hermoso B,et al.High-speed videos of laboratory leaders emerging from wind turbine blade tips[C]//Proceedings of the 30th International Conference on Lightning Protection (ICLP).Cagliari,Italy:IEEE,2010.
[5] Garolera A C,Holboell J,Madsen S F.Lightning attachment to wind turbine surfaces affected by internal blade conditions[C]//Proceedings of the International Conference on Lightning Protection (ICLP).Vienna,Austria:IEEE,2012.
[6] Armstrong H R,Whitehead E R.Field and analytical studies of transmission line shielding[J].IEEE Transactions on Power Apparatus and Systems,1968,87(1):270-281.
[7] Brown G W,Whitehead E R.Field and analytical studies of transmission line shielding:part II[J].IEEE Transactions on Power Apparatus and Systems,1969,88(5):617-626.
[8] 谢耀恒,刘赟,叶会生,等.正极性操作冲击下棒-棒间隙先导发展试验与仿真研究[J].中国电机工程学报,2016,36(21):5983-5989.
Xie Yaoheng,Liu Yun,Ye Huisheng,et al.Experimental and simulation study on the leader development in rod-rod air gaps under positive switching impulse voltage[J].Proceedings of the CSEE,2016,36(21):5983-5989(in Chinese).
[9] 师伟,李庆民.基于先导放电理论的雷击上行先导起始研究[J].中国电机工程学报,2014,34(15):2470-2477.
Shi Wei,Li Qingmin.Research on the lightning upward leader inception based on leader discharge theory[J].Proceedings of the CSEE,2014,34(15):2470-2477(in Chinese).
[10] 师伟.雷击特高压输电线路先导连接过程数值模拟研究[D].济南:山东大学,2015.
Shi Wei.Numerical simulation of lightning attachment to UHV transmission lines[D].Ji’nan:Shandong University,2015(in Chinese).
[11] 谢施君,何俊佳,陈维江,等.避雷针迎面先导发展物理过程仿真研究[J].中国电机工程学报,2012,32(10):32-40.
Xie Shijun,He Junjia,Chen Weijiang,et al.Simulation study on the development process of the upward leader incepted from lightning rod[J].Proceedings of the CSEE,2012,32(10):32-40(in Chinese).
[12] 马宇飞,张黎,闫江燕,等.风机叶片雷击上行先导的起始物理机制与临界长度判据[J].中国电机工程学报,2016,36(21):5975-5982.
Ma Yufei,Zhang Li,Yan Jiangyan,et al.Inception mechanism of lightning upward leader from the wind turbine blade and a proposed critical length criterion[J].Proceedings of the CSEE,2016,36(21):5975-5982(in Chinese).
[13] Long M N,Becerra M,Thottappillil R.On the Lightning Incidence to Wind Farms[C]//Proceedings of the 33rd International Conference on Lightning Protection (ICLP).Estaril,Portugal:IEEE,2016.
[14] Becerra M,Cooray V.A self-consistent upward leader propagation model[J].Journal of Physics D:Applied Physics,2006,39(16):3708-3715.
[15] Becerra M,Cooray V.A simplified physical model to determine the lightning upward connecting leader inception[J].IEEE Transactions on Power Delivery,2006,21(2):897-908.
[16] Rakov V A,Uman M A.Lightning:Physics and effects[M].Cambridge,UK:Cambridge University Press,2003.
[17] Amoruso V,Lattarulo F.Thundercloud pre-stroke electrostatic modeling[J].Journal of Electrostatics,2002,56(2):255-276.
[18] Eriksson A J.The lightning ground flash:an engineering study[D].Pretoria,South Africa:University of Natal,1979.
[19] Soula S,Chauzy S.Multilevel measurement of the electric field underneath a thundercloud:2.Dynamical evolution of a ground space charge layer[J].Journal of Geophysical Research,1991,96(D12):22327-22336.
[20] Willet J C,Davis D A,Laroche P.An experimental study of positive leaders initiating rocket-triggered lightning[J].Atmospheric Research,1999,51(3-4):189-219.
[21] Cooray V,Rakov V,Theethayi N.The lightning striking distance-Revisited[J].Journal of Electrostatics,2007,65(5-6):296-306.
[22] Abdel-Salam M,Turky A A,Hashem A A.The onset voltage of coronas on bare and coated conductors[J].Journal of Physics D:Applied Physics,1998,31(19):2550.
[23] Gallimberti I,Bacchiega G,Bondiou-Clergerie A,et al.Fundamental processes in long air gap discharges[J].Comptes Rendus Physique,2002,3(10):1335-1359.
[24] Gallimberti I.The mechanism of the long spark formation[J].Le Journal de Physique Colloques,1979,40(C7):C7-193-C7-250.
[25] Rizk F A M.A model for switching impulse leader inception and breakdown of long air-gaps[J].IEEE Transactions on Power Delivery,1989,4(1):596-606.
[26] Goelian N,Lalande P,Bondiou-Clergerie A,et al.A simplified model for the simulation of positive-spark development in long air gaps[J].Journal of Physics D:Applied Physics,1997,30(17):2441-2452.
[27] Dellera L,Garbagnati E.Lightning stroke simulation by means of the leader progression model.I.Description of the model and evaluation of exposure of free-standing structures[J].IEEE Transactions on Power Delivery,1990,5(4):2009-2022.
[28] Dellera L,Garbagnati E.Lightning stroke simulation by means of the leader progression model.II.Exposure and shielding failure evaluation of overhead lines with assessment of application graphs[J].IEEE Transactions on Power Delivery,1990,5(4):2023-2029.
[29] Whitehead J T,Chisholm W A,Anderson J G,et al.IEEE working group report.Estimating lightning performance of transmission lines.II:Updates to analytical models[J].IEEE Transactions on Power Delivery,1993,8(3):1254-1267.
[30] IEC.IEC 62305-1 Protection against lightning (part 1):general principles[S].2006.
[31] 闫江燕,张黎,李庆民,等.风机桨叶用PVC和巴塞木雷击电弧损伤的分子模拟研究[J].中国电机工程学报,2017,37(1):292-300.
Yan Jiangyan,Zhang Li,Li Qingmin,et al.Molecular simulation on the degradation characteristics of PVC and balsa wood used in wind turbine blade under lightning induced arc[J].Proceedings of the CSEE,2017,37(1):292-300(in Chinese).
[1] 李宏博, 张敏昊, 李庆民, 于万水, 郭子炘, Siew Wah Hoon. 雷击电弧气爆效应对风机的损伤机制与叶片优化设计[J]. 中国电机工程学报, 2020, 40(8): 2705-2714.
[2] 郭子炘, 李庆民, 于万水, 李宏博, 张黎, Siew Wah Hoon. 负极性雷击下地面物体上行先导稳定起始的初始流注动态临界长度判据[J]. 中国电机工程学报, 2020, 40(5): 1713-1721.
[3] 张黎, 姜力杨, 盖歆楠, 赵彤, 邹亮. 风机叶片材料雷击热损伤特性及损伤机制的分子动力学研究[J]. 中国电机工程学报, 2020, 40(3): 1009-1019.
[4] 郭子炘, 李庆民, 任瀚文, 张黎, 王国政, 马宇飞, 闫江燕, SIEW Wah Hoon, 方致阳. 基于雷电上行先导起始物理机制的风机叶片雷击概率评估模型[J]. 中国电机工程学报, 2018, 38(2): 653-662.
[5] 何天宇, 陈维江, 贺恒鑫, 时卫东, 边凯, 李新凯, 向念文, 黄胜鑫, 顾建伟, 傅中. 风力发电机叶片叶尖段外覆导体接闪系统的雷击防护性能研究[J]. 中国电机工程学报, 2018, 38(18): 5316-5325.
[6] 郭子炘, 李庆民, 于万水, 张黎, 王国政, 马宇飞, WAQASArif, SIEWWahHoon. 旋转状态下风机叶片雷击接闪特性的实验研究[J]. 中国电机工程学报, 2018, 38(16): 4951-4959.
[7] 舒立春, 戚家浩, 胡琴, 蒋兴良, 邱刚, 李瀚涛, 于洪杰. 风机叶片电加热防冰模型及分区防冰方法[J]. 中国电机工程学报, 2017, 37(5): 1448-1454.
[8] 王羽, 邓冶强, 文习山, 马宇晗, 蓝磊, 安韵竹, 鄂盛龙. 基于长间隙放电试验适用于大尺寸输电线路的改进电气几何模型[J]. 中国电机工程学报, 2017, 37(12): 3654-3661.
[9] 马宇飞1, 张黎2, 闫江燕1, 郭子炘1, 李庆民1, 方致阳3. 风机叶片雷击上行先导的起始物理机制与临界长度判据[J]. 中国电机工程学报, 2016, 36(21): 5975-5982.
[10] 陈维江, 贺恒鑫, 何俊佳, 赵贤根, 余辉, 时卫东, 何天宇. 输电线路雷电先导发展三维仿真模型[J]. 中国电机工程学报, 2014, 34(36): 6601-6612.
[11] 边凯,陈维江,沈海滨,李成榕,王立天, ,赵海军,王彦利,尹彬. 高速铁路牵引供电接触网用带间隙避雷器的研制[J]. 中国电机工程学报, 2013, 33(10): 200-209.
[12] 郝艳捧,毛长庚,王国利,韩永霞. 高海拔地区复合绝缘子先导发展法闪络判据[J]. 中国电机工程学报, 2012, 32(34): 158-164.
[13] 马御棠 吴广宁 曹晓斌 王韬 李瑞芳 苏杰. 微地形下输电线路绕击闪络率的计算方法[J]. 中国电机工程学报, 2011, 31(22): 135-141.
[1] XU Yongpeng, YANG Fengyuan, QIAN Yong, SHENG Gehao, LI Zhe, JIANG Xiuchen. Pattern Recognition of PD in DC Cable Terminal Joint Based on the Improved ECOC Classifier[J]. Proceedings of the CSEE, 2017, 37(4): 1260 -1267 .
[2] LI Xiaoling, ZENG Zheng, CHEN Hao, SHAO Weihua, HU Borong, RAN Li. Comparative Package Evaluation and Failure Mode Analysis of SiC, Si, and Hybrid Power Modules[J]. Proceeding of the CSEE, 2018, 38(16): 4823 -4835 .
[3] QU Zhijian, ZHAO Liang, CHEN Dinglong. RWI Fast Query Technology for Time Series Data Cluster of Distribution Network SCADA[J]. Proceeding of the CSEE, 2018, 38(17): 5085 -5096 .
[4] YANG Xiaochuan, MENG Dehong, WANG Yuntao, SUN Yan, LI Wei. Research on Wind Turbine With/Without Tower and Load Characteristic of Blade at High Tip-speed Ratio[J]. Proceeding of the CSEE, 2018, 38(9): 2649 -2656 .
[5] CUI Lu, CHEN Weigen, ZHANG Zhixian, LI Jian, XIANG Chenmeng. Thermal Stability of Vegetable Oil Impregnated Pressboard and Its Influence on the Air-gap Discharge Development[J]. Proceeding of the CSEE, 2018, 38(4): 1248 -1254 .
[6] ZHANG Zhi XIE Yunxiang LE Jiangyuan CHEN Lin. Study of SVPWM Method for Single-phase Three-level Diode-clamped Inverter[J]. Proceeding of the CSEE, 2010, 30(27): 62 -68 .
[7] WANG Guang-qing GUO Ji-feng. Temperature Performance Study of Traveling-wave Type Ultrasonic Motor[J]. Proceeding of the CSEE, 2008, 28(9): 98 -104 .
[8] TANG Ming, NING Guangfu, QIAO Guangyao, CHEN Wu. Analysis and Verification of a Low-cost High Voltage Pulse Power Supply for Electrostatic Precipitators[J]. Proceeding of the CSEE, 2018, 38(3): 890 -898 .
[9] . [J]. Proceeding of the CSEE, 2006, 26(12): 39 -44 .
[10] CHEN Zhong CHEN Miao LUO Yingpeng SHI Lei CUI Lianjie. A Parallel Active Power Filter With Single Power Switch Leg[J]. Proceeding of the CSEE, 2012, 32(3): 22 -29 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05032083号-2
版权所有: 《中国电机工程学报》编辑部
技术支持:北京玛格泰克科技发展有限公司